Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Cumhur Kırılmış, ${ }^{\text {a }}$ Murat Koca, ${ }^{\text {a }}$ Cengiz Arıcı, ${ }^{\text {b }}$ * Frank W.
Heinemann ${ }^{c}$ and Misir Ahmedzade ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Fırat University, 23169, Elazıg, Turkey,
${ }^{\mathbf{b}}$ Department of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey, and ${ }^{\mathrm{c}}$ Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

Correspondence e-mail: arici@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.070$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Butyl-4-(3-methyl-3-phenylcyclobut-1-yl)-1,3-thiazole-2(3H)-thione

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NS}_{2}$, the bond lengths and angles are unexceptional. The butyl chain is in a fully extended conformation. The dihedral angle between the thiazole and phenyl rings is $87.21(2)^{\circ}$. The crystal structure is stabilized by one weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond.

Comment

1,3-Thiazole-2(3H)-thiones have found many uses in recent years, in such diverse fields as photography, agrochemistry, and radiochemistry; in agrochemistry in particular, they are potential plant-protecting compounds, e.g. as fungicides and insecticides (Ahmedzade, Çukurovalı \& Koparır, 2003). It has been reported that several thiazoles and thiazolidin-4-ones are of biological importance, especially as antimetabolites and schistosomicides (El-Zahar et al., 1994). Various thiazole derivatives show herbicidal, anti-inflammatory, antimicrobial and antiparasite activity (Koparır et al., 2004; Ahmedzade, Çukurovalı \& Koparır, 2003), and also liquid crystal properties (Coghi et al., 1976).

The bond lengths and angles of the thiazolethione system of the title compound, (I), are unexceptional and agree well with previously reported values (Hartung et al., 2003; Kanagapushpam \& Venkatesan, 1987). Likewise, the geometric parameters of the cyclobutane ring are in accord with literature values (Özdemir et al., 2004; Yüksektepe et al., 2004). The butyl chain is in a fully extended conformation, the N1$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$ torsion angles being 173.3 (1) and 175.1 (2) ${ }^{\circ}$, respectively.

The thiazolethione system is essentially planar, the maximum deviation from planarity being 0.006 (1) \AA for atom S2. The dihedral angle between the thiazole and phenyl rings is $87.21(2)^{\circ}$. The cyclobutane ring is puckered, the $\mathrm{C} 10 / \mathrm{C} 11 /$ C9 plane forming a dihedral angle of 24.37 (3) ${ }^{\circ}$ with the C9/ C7/C10 plane. This compares well with the value of 23.5 (4) ${ }^{\circ}$ reported for a hexafluorocyclobutane (Swenson et al., 1997).

The crystal structure is stabilized by one weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond (Table 1). The C $\cdots \mathrm{S}$ distance of 3.132 (2) \AA is longer than that observed in a similar thiazoline compound [2.69 (6) Å; Aydın et al., 1999].

Received 19 January 2005
Accepted 28 January 2005 Online 5 February 2005
(I)

Experimental

2-Chloro-1-(3-methyl-3-phenylcyclobutyl)ethan-1-one (4.45 g, 0.02 mol) was added in portions to a stirred slurry containing potassium benzylcarbamodithioate $(4.4 \mathrm{~g}, 0.02 \mathrm{~mol})$ in ethanol $(40 \mathrm{ml})$. After stirring for 50 min , the temperature had risen from 293 to 313 K . The stirred reaction mixture was heated at reflux (351-353 K) for 4 h and then allowed to cool. Stirring was maintained at 298303 K for 24 h . After cooling to 278 K , water (60 ml) was added. The solid was collected by filtration, washed with water and dried in air at 298-303 K. The elemental analysis, IR and NMR spectroscopic data of the title compound have already been published (Ahmedzade, Kırılmış et al., 2003).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NS}_{2}$
$M_{r}=317.51$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.908$ (1) \AA 。
$b=10.442$ (1) \AA
$c=16.603(2) \AA$
$V=1717.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.228 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 313

reflections

$\theta=6.0-20.0^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Prism, colourless
$0.30 \times 0.28 \times 0.23 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer

ω scans

Absorption correction: multi-scan
(SADABS (Bruke, 2002)
$T_{\text {min }}=0.913, T_{\text {max }}=0.932$
19922 measured reflections
3833 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.070$
$S=1.02$
3833 reflections
259 parameters
Only positions of H atoms refined

3274 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 13$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.035 P)^{2}\right. \\
& +0.237 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1582 \text { Friedel pairs } \\
& \text { Flack parameter }=0.04(6)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{~S} 2$	$0.99(3)$	$2.78(2)$	$3.132(2)$	$102(2)$

H atoms were refined in x, y, z, while their $U_{\text {iso }}$ values were fixed at $0.040 \AA^{2}$.

Data collection: COLLECT (Bruker, 2002); cell refinement: EVALCCD (Bruker, 2002); data reduction: EVALCCD; program(s)

Figure 1
ORTEP-3 plot (Farrugia, 1997) of the title compound, with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: $S H E L X T L$; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

References

Ahmedzade, M., Çukurovalı, A. \& Koparır, M. (2003). J. Chem. Soc. Pak. 25, 51-55.
Ahmedzade, M., Kırılmış, C., Çukurovalı, A. \& Dilsiz, N. (2003). S. Afr. J. Chem. 56, 21-24.
Aydın, A., Soylu, H., Akkurt, M., Arı1, C. \& Erdemir, M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 529-530.
Bruker (2002). COLLECT and EVALCCD. Bruker AXS Inc., Madison, Wisconsin, USA.
Coghi, L., Lanfredi, A. M. M. \& Tripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.
El-Zahar, M. I., Kamal, M. M. \& Anwar, M. (1994). Pharmazie, 49, 616-617.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hartung, J., Schwarz, M., Svoboda, I. \& Fuess, H. (2003). Acta Cryst. C59, o682-o684.
Kanagapushpam, D. \& Venkatesan, K. (1987). Acta Cryst. C43, 1597-1598.
Koparır, M., Cansız, A., Ahmedzade, M. \& Çetin, A. (2004). Heteroatom Chem. 15, 26-31.
Özdemir, N., Dinçer, M., Yilmaz, I. \& Çukurovali, A. (2004). Acta Cryst. E60, o145-o147.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Swenson, D. C., Yamamoto, M. \& Burton, D. J. (1997). Acta Cryst. C53, 14451447.

Yüksektepe, C., Saraçoglu, H., Koca, M., Çukurovali A. \& Çaliskan, N. (2004). Acta Cryst. C60, 0509-o510.

